Verification for the Utility Wildfire Mitigation Maturity Survey

Utilities shall complete the following verification, attached to a PDF of their electronic survey responses, following completion of the electronic survey. This document will be shared with the utilities for completion within one business day of completing the electronic survey.

Complete the following verification for the Utility Wildfire Mitigation Maturity Survey submission:

(See Rule 1.11)
(Where Applicant is a Corporation)

I am an officer of the applicant corporation herein, and am authorized to make this verification on its behalf. The responses in the attached survey are true of my own knowledge.

I declare that the foregoing is true and correct.

Executed on _March 5, 2021_ at _San Francisco_, California.
(Date) (Name of city)

[Signature and Title of Corporate Officer]
We thank you for your time spent taking this survey. Your response has been recorded.

Below is a summary of your responses

Purpose of utility survey:
This survey, in addition to other inputs, will be used to inform the utility’s maturity level to establish a level for the current year (2021), as well as establish a target maturity for 2023.

The assessment of maturity will also leverage each utility’s WMP submission, other supporting documents and disclosures, and select audits of relevant inputs where deemed necessary.

Instructions for answering each of the survey questions:

Utilities shall answer survey questions by:

1. Indicating the most appropriate response option to each question based on the presently employed practices and capabilities of the utility.

2. Indicating the most appropriate response to each question for the utility’s expected capabilities in 3 years (Q1, 2023) based on expected growth in maturity over the 3 year period of the Wildfire Mitigation Plan (WMP) to inform the utility’s 3-year target maturity.

Only one response option should be selected unless the question is specified as
Only one response option should be selected unless the question is specified to select all that apply.

Importantly, utilities shall only indicate that they meet a given response option if they meet all of the characteristics described within that response option, across all instances where that question is valid.

For example, if a utility meets all criteria for answer ii of a given question and all but one criterion for answer iii, that utility must select answer ii. Similarly, if a utility meets all criteria for answer ii of a given question over 60% of its territory but meets all criteria for answer i over 100% of its territory, the utility must select answer i.

Instructions for use of the electronic survey:

Please fill out the electronic survey in its entirety.

The unique link provided to you can be used on multiple devices. Please only use on a single device at a time. To avoid creation of any conflict copies, please allow 15 minutes to pass before switching between devices. For example, if passing the survey off to a colleague on a different machine please have the colleague wait for 15 minutes after you stop working to begin.

If you are completing the survey in multiple sittings, your progress will be saved. You may use the unique link provided to you to resume where you left off.

Confirmation of survey responses:

Within 24 hours of completing and submitting the survey in its entirety, the main utility contact designated below will receive a PDF of your responses for final verification by email. Please review that document, confirm all of your responses one final time, and provide your signature as instructed in the PDF.

Your responses will be evaluated by the CPUC following this final verification.

A. Risk mapping and simulation

A.1 Climate scenario modeling and sensitivities

Capability 1
A.I.a How sophisticated is utility's ability to estimate the risk of weather scenarios?

Clarification: Determining wildfire risk requires the utility to understand the probability of ignition and the consequences of such an ignition while taking various conditions into account (e.g., weather, fuel levels, etc.). Categorizing level of risk requires a set of calculations and judgements to group areas by wildfire risk level whereas quantitatively estimating risk refers to accurately quantifying risk on a continuous spectrum based on a host of wildfire risk drivers (e.g., as a function of ignition probability, propagation scenarios, and communities located in the propagation path).

i. No clear ability to understand incremental risk under various weather scenarios
ii. Wildfire risk can be reliably determined based on weather and its impacts
iii. Weather scenarios can be reliably categorized by level of risk
iv. Risk for various weather scenarios can be reliably estimated
v. Incremental risk of foreseeable weather scenarios can be accurately and quantitatively estimated

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

A.I.b How are scenarios assessed?

Clarification: Per the instructions, please only indicate that you meet a given response option if you meet all the characteristics described within that response option. So, hypothetically, if you do support your scenarios assessment by historical data of incidents and near misses and conduct internal assessments, but don’t have an independent expert assessment, you would select (ii).

i. No formal assessment process
ii. Independent expert assessment
iii. Independent expert assessment, supported by historical data of incidents and near misses
iv. Independent expert assessment, supported by historical data of incidents and near misses, and updated based on real-time learning during weather event

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

A.I.c How granular is utility's ability to model scenarios?

i. Less granular than regional, or no tool at all
ii. Regional
iii. Circuit-based
iv. Span-based
v. Asset-based

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
A.I.d How automated is the tool?

Clarification: For clarification on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

<table>
<thead>
<tr>
<th></th>
<th>i. Not automated</th>
<th>ii. Partially (<50%)</th>
<th>iii. Mostly (≥ 50%)</th>
<th>iv. Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.I.e What additional information is used to estimate model weather scenarios and their risk?

<table>
<thead>
<tr>
<th></th>
<th>i. None</th>
<th>ii. Weather, how weather effects failure modes and propagation</th>
<th>iii. Weather, existing hardware</th>
<th>iv. Weather, measured at the circuit level, how weather effects failure modes and propagation, existing hardware, level of vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.I.f To what extent is future change in climate taken into account for future risk estimation?

<table>
<thead>
<tr>
<th></th>
<th>i. Future climate change not accounted for in estimating future weather and resulting risk</th>
<th>ii. Future risk estimates take into account generally higher risk across entire service territory due to changing climate</th>
<th>iii. Basic temperature modeling used to estimate effects of a changing climate on future weather and risk, taking into account difference in geography and vegetation</th>
<th>iv. Modeling with multiple scenarios used to estimate effects of a changing climate on future weather and risk, taking into account difference in geography and vegetation, and considering increase in extreme weather event frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.II Ignition risk estimation

Capability 2

A.II.a How is ignition risk calculated?
A.II.b How automated is the ignition risk calculation tool?

Clarification: For clarification on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

<table>
<thead>
<tr>
<th>Current Year</th>
<th>partially (<50%)</th>
<th>Mosty (≥ 50%)</th>
<th>iv. Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

A.II.c How granular is the tool?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>Regional</th>
<th>ii. Circuit-based</th>
<th>iii. Span-based</th>
<th>iv. Asset-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>■</td>
<td>■</td>
<td>○</td>
<td>■</td>
</tr>
</tbody>
</table>

A.II.d How is risk assessment confirmed? Select all that apply.

<table>
<thead>
<tr>
<th>Current Year</th>
<th>By experts</th>
<th>ii. By historical data</th>
<th>Through real-time learning</th>
<th>iv. None of the above</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

A.II.e What confidence interval, in percent, does the utility use in its wildfire risk assessments?

>60%, or no quantified
A.III Estimation of wildfire consequences for communities

Capabilities 3

A.III.a How is estimated consequence of ignition relayed?

| i. No translation of ignition risk estimates to potential consequences for communities |
| ii. Ignition events categorized as low or high risk to communities |
| iii. Ignition events categorized with 5 or more levels of risk to communities |
| iv. Consequence of ignition events quantitatively, accurately, and precisely estimated |

Current Year
by Start of 2023

A.III.b What metrics are used to estimate the consequence of ignition risk?

| i. As a function of at least one of the following: structures burned, potential fatalities, or area burned |
| ii. As a function of at least potential fatalities, and one or both of structures burned, or area burned |
| iii. As a function of at least potential fatalities, structures burned, area burned, monetary damages, impact on air quality, and impact on GHG reduction goals |

Current Year
by Start of 2023

A.III.c Is the ignition risk impact analysis available for all seasons?

| i. No |
| ii. Yes |

Current Year
by Start of 2023

A.III.d How automated is the ignition risk estimation process?

Clarification: For clarification on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

| i. Not automated |
| ii. Partially (<50%) |
| iii. Mostly (≥ 50%) |
| iv. Fully |

Current Year
by Start of 2023
A.III.e How granular is the ignition risk estimation process?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. Less granular than regional, or no tool at all</th>
<th>ii. Regional</th>
<th>iii. Circuit-based</th>
<th>iv. Span-based</th>
<th>v. Asset-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A.III.f How are the outputs of the ignition risk impact assessment tool evaluated?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. Outputs not evaluated</th>
<th>ii. Outputs independently assessed by experts</th>
<th>iii. Outputs independently assessed by experts and confirmed by historical data</th>
<th>iv. Outputs independently assessed by experts and confirmed based on real time learning, for example, using machine learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A.III.g How other inputs are used to estimate impact?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. Level and conditions of vegetation and weather</th>
<th>ii. Level and conditions of vegetation and weather, including the vegetation specifies immediately surrounding the ignition site</th>
<th>iii. Level and conditions of vegetation and weather, including the vegetation specifies immediately surrounding the ignition site and up-to-date moisture content, local weather patterns</th>
<th>iv. None of the above</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

A.IV Estimation of wildfire and PSPS risk-reduction impact

Capability 4

A.IV.a How is risk reduction impact estimated?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. No clear estimation of risk reduction</th>
<th>ii. Approach accurately estimates risk reduction potential of initiatives on an interval scale (e.g. specific quantitative units)</th>
<th>iii. Approach reliably estimates risk reduction potential of initiatives on an interval scale (e.g. specific quantitative units)</th>
<th>iv. Approach reliably estimates risk reduction potential of initiatives on an interval scale (e.g. specific quantitative units)</th>
<th>v. Approach reliably estimates risk reduction potential of initiatives on an interval scale (e.g. specific quantitative units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
A.IV.b How automated is your ignition risk reduction impact assessment tool?

Clarification: For clarification on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

A.IV.c How granular is the ignition risk reduction impact assessment tool?

A.IV.d How are ignition risk reduction impact assessment tool estimates assessed?

A.IV.e What additional information is used to estimate risk reduction impact?
A.V Risk maps and simulation algorithms

Capability 5

Clarification on terminology: A risk map is a collection of data sufficient to represent the spatial distribution (e.g., across a geography) of a given type of risk (i.e., the probability of an event and its consequence) and the spatial representation thereof. Risk maps may include maps of the probability of ignition along the utility’s grid and may represent the consequences given ignition at various points along the grid. Risk maps may also combine these factors to show a weighted probability and consequence risk level across the utility’s grid. Data inputs should include the variables and conditions used to calculate risk for a given point, line, or polygon. The risk mapping algorithm is a methodology or formula for interpreting a risk calculation from these data inputs.

A.V.a What is the protocol to update risk mapping algorithms?

<table>
<thead>
<tr>
<th>Current Year by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. No defined process for updating risk mapping algorithms</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

A.V.b How automated is the mechanism to determine whether to update algorithms based on deviations?

Clarification: For clarification on level of automation please refer to the ‘level of systematization and automation’ in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

<table>
<thead>
<tr>
<th>Current Year by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Not automated</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

A.V.c How are deviations from risk model to ignitions and propagation detected?

<table>
<thead>
<tr>
<th>i. Not currently calculated</th>
<th>ii. Manually</th>
<th>iii. Semi-automated process</th>
<th>iv. Fully automated process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
A.V.d How are decisions to update algorithms evaluated?

- i. Not currently evaluated
- ii. Independently evaluated by experts
- iii. Independently evaluated by experts and historical data

A.V.e What other data is used to make decisions on whether to update algorithms?

- i. Historic ignition and propagation data
- ii. Current and historic ignition and propagation data
- iii. Current and historic ignition and propagation data; near-miss data
- iv. Current and historic ignition and propagation data; near-miss data; data from other utilities and other sources
- v. None of the above

B. Situational awareness and forecasting

B.I Weather variables collected

Capability 6

B.I.a What weather data is currently collected?

- i. Wind data being collected is insufficient to properly understand wind related risks along grid
- ii. Wind being measured accurately enough along the grid to estimate ignition probability
- iii. Range of accurate weather variables (e.g. humidity, precipitation, surface and atmospheric wind conditions) that impact probability of ignition and propagation from utility assets
- iv. Range of accurate weather variables that impact probability of ignition and propagation from utility assets; additional data to measure physical impact of weather on grid collected (e.g., sway in lines, sway in vegetation)
B.I. Measurements Validation

B.I.b How are measurements validated?

<table>
<thead>
<tr>
<th>i. Measurements not currently validated</th>
<th>ii. Manual field calibration measurements</th>
<th>iii. Automatic field calibration measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Year

- ![Circle](image10)
- ![Circle](image11)
- ![Circle](image12)

by Start of 2023

- ![Circle](image13)
- ![Circle](image14)
- ![Circle](image15)

B.I.c Are elements that cannot be reliably measured in real time being predicted (e.g., fuel moisture content)?

Current Year

- ![Circle](image16)

by Start of 2023

- ![Circle](image17)

B.I.d How many sources are being used to provide data on weather metrics being collected?

Current Year

- ![Circle](image18)

by Start of 2023

- ![Circle](image19)

B.II Weather Data Resolution

Capability 7

B.II.a How granular is the weather data that is collected?

<table>
<thead>
<tr>
<th>i. Weather data collected does not accurately reflect local weather conditions across grid infrastructure</th>
<th>ii. Weather data has sufficient granularity to reliably measure weather conditions in HFTD areas</th>
<th>iii. Weather data has sufficient granularity to reliably measure weather conditions in HFTD areas, and along the entire grid and in all areas needed to predict weather on the grid</th>
<th>iv. Weather data has sufficient granularity to reliably measure weather conditions in HFTD areas, and along the entire grid and in all areas needed to predict weather on the grid. Also includes wind estimations at various atmospheric altitudes relevant to ignition risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Year

- ![Circle](image28)

by Start of 2023

- ![Circle](image29)

B.II.b How frequently is data gathered?

<table>
<thead>
<tr>
<th>i. Less frequently than hourly</th>
<th>ii. At least hourly</th>
<th>iii. At least four times per hour</th>
<th>iv. At least six times per hour</th>
<th>v. At least sixty times per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Year

- ![Circle](image40)

by Start of 2023

- ![Circle](image41)

- ![Circle](image42)

- ![Circle](image43)

- ![Circle](image44)
B.II.c How granular is the tool?

- i. Less granular than regional, or no tool at all
- ii. Regional
- iii. Circuit-based
- iv. Span-based
- v. Asset-based

B.II.d How automated is the process to measure weather conditions?

Clarification: For clarification on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

- i. Not automated
- ii. Partially (<50%)
- iii. Mostly (≥50%)
- iv. Fully

B.III Weather forecasting ability

Capability 8

B.III.a How sophisticated is the utility's weather forecasting ability?

- i. No reliable independent weather forecasting ability
- ii. Utility has independent weather forecasting ability sufficiently accurate to fulfill PSPS requirements
- iii. Utility has the ability to use a combination of accurate weather stations and external weather data to make accurate forecasts
- iv. Utility has the ability to use a combination of accurate weather stations and external weather data to make accurate forecasts, and adjusts them in real time based on a learning algorithm and updated weather inputs

B.III.b How far in advance can accurate forecasts be prepared?

- i. Less than two weeks in advance
- ii. At least two weeks in advance
- iii. At least three weeks in advance
B.III.c At what level of granularity can forecasts be prepared?

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Less granular than regional, or no forecasts at all</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>ii. Regional</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>iii. Circuit-based</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>iv. Span-based</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>v. Asset-based</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

B.III.d How are results error-checked?

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Results are not error checked</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>ii. Results are error checked against historical weather patterns</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>iii. Criteria for option (ii) met, and forecasted results are subsequently error checked against measured weather data</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

B.III.e How automated is the forecast process?

Clarification: For clarification on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Not automated</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>ii. Partially (<50%)</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>iii. Mostly (≥50%)</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>iv. Fully</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

B.IV External sources used in weather forecasting

Capability 9

B.IV.a What source does the utility use for weather data?

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Utility does not use external weather data</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>ii. External data used where direct measurements from utility's own weather stations are not available</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>iii. Utility uses a combination of accurate weather stations and external weather data, and elects to use the data set, as a whole or in composite, that is most accurate</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>iv. Utility uses a combination of accurate weather stations and external weather data, and elects to use the data set, as a whole or in composite, that is most accurate</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

B.IV.b How is weather station data checked for errors?
B.IV.c For what is weather data used?

i. Weather data is used to make decisions

ii. Weather data is used to produce a combined weather map that can be used to help make decisions

iii. Weather data is used to create a single visual and configurable live map that can be used to help make decisions

Current Year
by Start of 2023

B.V Wildfire detection processes and capabilities

Capability 10

B.V.a Are there well-defined procedures for detecting ignitions along the grid?

i. No

ii. Yes

Current Year
by Start of 2023

B.V.b What equipment is used to detect ignitions?

i. No consistent set of equipment for detecting ignitions

ii. Well-defined equipment for detecting ignitions along grid, including remote detection equipment

iii. Well-defined equipment for detecting ignitions along grid, including remote detection equipment including cameras, and satellite

iv. Well-defined equipment for detecting ignitions along grid, including remote detection equipment
B.V.c How is information on detected ignitions reported?

B.V.d What role does ignition detection software play in wildfire detection?

C. Grid design and system hardening

Clarification: ‘Hardening’ refers to grid hardening as defined in the WMP guidelines: Actions (such as equipment upgrades, maintenance, and planning for more resilient infrastructure) taken in response to the risk of undesirable events (such as outages) or undesirable conditions of the electrical system in order to reduce or mitigate those events and conditions, informed by an assessment of the relevant risk drivers or factors.

C.I Approach to prioritizing initiatives across territory
C.I.a How are wildfire risk reduction initiatives prioritized?

i. Plan does not clearly prioritize initiatives geographically to focus on highest risk areas

ii. Plan prioritizes risk reduction initiatives to within only HFTD areas

iii. Plan prioritizes wildfire risk reduction initiatives based on local geography and conditions within only HFTD areas

iv. Plan prioritizes wildfire risk reduction initiatives at the asset level based on i) risk modeling driven by local geography and climate/weather conditions, fuel loads and moisture content and topography ii) risk estimates across individual circuits, including estimates of actual consequence, and iii) taking power delivery uptime into account (e.g. reliability, PSPS, etc.)

v. Plan prioritizes wildfire risk reduction initiatives at the span level based on i) risk modeling driven by local geography and climate/weather conditions, fuel loads and moisture content and topography ii) detailed wildfire and PSPS risk simulations across individual circuits, including estimates of actual consequence, and iii) taking power delivery uptime into account (e.g. reliability, PSPS, etc.)

Current Year

by Start of 2023

C.II Grid design for minimizing ignition risk

Capability 12

C.II.a Does grid design meet minimum G095 requirements and loading standards in HFTD areas?

i. No

ii. Yes

iii. Grid topology exceeds design requirements, designed based on accurate understanding of drivers of utility ignition risk

Current Year

by Start of 2023

C.II.b Does the utility provide micro grids or islanding where traditional grid infrastructure is impracticable and wildfire risk is high?
grid infrastructure is impracticable and wildfire risk is high?

C.II.c Does routing of new portions of the grid take wildfire risk into account?

C.II.d Are efforts made to incorporate the latest asset management strategies and new technologies into grid topology?

C.III Grid design for resiliency and minimizing PSPS Capability 13

C.III.a What level of redundancy does the utility’s transmission architecture have?

C.III.b What level of redundancy does the utility’s distribution architecture have?

C.III.c What level of sectionalization does the utility’s distribution architecture have?
C.III.d How does the utility consider egress points in its grid topology?

C.IV Risk-based grid hardening and cost efficiency

Current Year
by Start of 2023

C.IV.a Does the utility have an understanding of the risk spend efficiency of hardening initiatives?

Clarification: ‘Hardening initiatives’ refers to all initiatives implemented by utility or by other utilities in California

C.IV.b At what level can estimates be prepared?

C.IV.c How frequently are estimates updated?

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Never</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>ii. Less frequently than annually</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>iii. Annually or more frequently</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

C.IV.d What grid hardening initiatives does the utility include within its evaluation?

Clarification: ‘All Hardening initiatives’ refers to all initiatives implemented by utility or by other utilities in California

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. None</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ii. Some</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>iii. Most</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>iv. All</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>v. All, supported by independent testing</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

C.IV.e Can the utility evaluate risk reduction synergies from combination of various initiatives?

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. No</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ii. Yes</td>
<td>●</td>
<td>○</td>
</tr>
</tbody>
</table>

C.V Grid design and asset innovation

Capability 15

C.V.a How are new hardening solution initiatives evaluated?

<table>
<thead>
<tr>
<th>Option</th>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. No established program for evaluating the risk spend efficiency of new hardening initiatives</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ii. New initiatives evaluated based on installation into grid and measuring direct reduction in ignition events</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>iii. New initiatives evaluated based on installation into grid and measuring reduction impact on near-miss metrics</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>iv. New initiatives independently evaluated, followed by field testing based on installation into grid and measuring direct reduction in ignition events, and measuring reduction impact on near-miss metrics</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
C.V.b Are results of pilot and commercial deployments, including project performance, project cost, geography, climate, vegetation etc. shared in sufficient detail to inform decision making at other utilities?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes, with limited partners</th>
<th>iii. Yes, extensively with industry, academia, and other utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V.c Is performance of new initiatives independently audited?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

D. Asset management and inspections

D.I Asset inventory and condition assessments

Capability 16

D.I.a What information is captured in the equipment inventory database?

- **i. There is no service territory-wide inventory of electric lines and equipment including their state of wear or disrepair**
- **ii. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle**
- **iii. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle, including records of all inspections and repairs and up-to-date work plans on expected future repairs and replacements wherein sensor outputs are independently audited**
- **iv. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle, including records of all inspections and repairs and up-to-date work plans on expected future repairs and replacements**
- **v. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle, including records of all inspections and repairs and up-to-date work plans on expected future repairs and replacements**

<table>
<thead>
<tr>
<th></th>
<th>i. There is no service territory-wide inventory of electric lines and equipment including their state of wear or disrepair</th>
<th>ii. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle</th>
<th>iii. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle, including records of all inspections and repairs and up-to-date work plans on expected future repairs and replacements wherein sensor outputs are independently audited</th>
<th>iv. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle, including records of all inspections and repairs and up-to-date work plans on expected future repairs and replacements</th>
<th>v. There is an accurate inventory of equipment that may contribute to wildfire risk, including age, state of wear, and expected lifecycle, including records of all inspections and repairs and up-to-date work plans on expected future repairs and replacements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of 2023</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D.I.b How frequently is the condition assessment updated?

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Annually</th>
<th>Quarterly</th>
<th>Monthly</th>
<th>Hourly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>✗</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Start of 2023</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

D.I.c Does all equipment in HFTD areas have the ability to detect and respond to malfunctions?

<table>
<thead>
<tr>
<th></th>
<th>No system and approach are in place to detect or respond to malfunctions</th>
<th>A system and approach are in place to reliably detect incipient malfunctions likely to cause ignition</th>
<th>Sensorized, continuous monitoring equipment is in place to determine the state of equipment and reliably detect incipient malfunctions likely to cause ignition, with the ability to de-activate electric lines and equipment exhibiting such failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>☐</td>
<td>☐</td>
<td>☜</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>☐</td>
<td>☜</td>
<td>☜</td>
</tr>
</tbody>
</table>

D.I.d How granular is the inventory?

<table>
<thead>
<tr>
<th></th>
<th>There is no inventory</th>
<th>At the span level</th>
<th>At the asset level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>☐</td>
<td>☐</td>
<td>☜</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>☐</td>
<td>☐</td>
<td>☜</td>
</tr>
</tbody>
</table>

D.II Asset inspection cycle

Capability 17

D.II.a How frequent are your patrol inspections?

<table>
<thead>
<tr>
<th></th>
<th>Less frequent than regulations require</th>
<th>Consistent with minimum regulatory requirements</th>
<th>Above minimum regulatory requirements, with more frequent inspections for highest risk equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>☐</td>
<td>☐</td>
<td>☜</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>☐</td>
<td>☐</td>
<td>☜</td>
</tr>
</tbody>
</table>

D.II.b How are patrol inspections scheduled?

<table>
<thead>
<tr>
<th></th>
<th>Risk, as determined by</th>
<th>Risk, independently determined by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D.II.c What are the inputs to scheduling patrol inspections?

i. At least annually updated or verified static maps of equipment and environment
ii. Predictive modeling of equipment failure probability and risk
iii. Predictive modeling supplemented with continuous monitoring by sensors
iv. Outdated static maps

D.II.d How frequent are detailed inspections?

i. Less frequent than regulations require
ii. Consistent with minimum regulatory requirements
iii. Above minimum regulatory requirements, with more frequent inspections for highest risk equipment

D.II.e How are detailed inspections scheduled?

i. Based on annual or periodic schedules
ii. Based on up-to-date static maps of equipment types and environment
iii. Risk, as determined by predictive modeling of equipment failure probability and risk causing ignition
iv. Risk, independently determined by predictive modeling of equipment failure probability and risk causing ignition

D.II.f What are the inputs to scheduling detailed inspections?

i. At least annually updated or verified static maps of equipment and environment
ii. Predictive modeling of equipment failure probability and risk
iii. Predictive modeling supplemented with continuous monitoring by sensors
iv. Outdated static maps

D.II.g How frequent are your other inspections?
D.II.h How are other inspections scheduled?

<table>
<thead>
<tr>
<th>Component</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Based on annual or periodic schedules</td>
<td>☑️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Based on up-to-date static maps of equipment types and environment</td>
<td></td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Risk, as determined by predictive modeling of equipment failure probability and risk causing ignition</td>
<td></td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>iv. Risk, independently determined by predictive modeling of equipment failure probability and risk causing ignition</td>
<td></td>
<td></td>
<td></td>
<td>☑️</td>
</tr>
</tbody>
</table>

D.II.i What are the inputs to scheduling other inspections?

<table>
<thead>
<tr>
<th>Component</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. At least annually updated or verified static maps of equipment and environment</td>
<td>☑️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Predictive modeling of equipment failure probability and risk</td>
<td></td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Predictive modeling supplemented with continuous monitoring by sensors</td>
<td></td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>iv. Outdated static maps</td>
<td></td>
<td></td>
<td></td>
<td>☑️</td>
</tr>
</tbody>
</table>

D.III Asset inspection effectiveness

Capability 18

D.III.a What items are captured within inspection procedures and checklists?

<table>
<thead>
<tr>
<th>Component</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Patrol, detailed, enhanced, and other inspection procedures and checklists do not include all items required by statute and regulations</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Patrol, detailed, enhanced, and other inspection procedures and checklists include all items required by statute and regulations</td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>iii. Patrol, detailed, enhanced, and other inspection procedures and checklists include all items required by statute and regulations, and includes lines and equipment typically responsible for ignitions and near misses</td>
<td></td>
<td></td>
<td>☑️</td>
</tr>
</tbody>
</table>

D.III.b How are procedures and checklists determined?
D.III.c At what level of granularity are the depth of checklists, training, and procedures customized?

i. Across the service territory

ii. Across a region

iii. At the circuit level

iv. At the span level

v. At the asset level

Current Year
by Start of 2023

D.IV Asset maintenance and repair

Capability 19

D.IV.a What level are electrical lines and equipment maintained at?

i. Electric lines and equipment not consistently maintained at required condition over multiple circuits

ii. Electrical lines and equipment maintained as required by regulation

iii. Electrical lines and equipment maintained as required by regulation, and additional maintenance done in areas of grid at highest wildfire risk based on detailed risk mapping

Current Year
by Start of 2023

D.IV.b How are service intervals set?

i. Based on wildfire risk in relevant area

ii. Based on wildfire risk in relevant circuit, as well as real-time monitoring from sensors

iii. Based on wildfire risk in relevant circuit, as well as real-time monitoring from sensors

iv. None of the above

Current Year
by Start of 2023

D.IV.c What do maintenance and repair procedures take into account?
D.V QA/QC for asset maintenance

Capability 20

D.V.a How is contractor activity audited?

<table>
<thead>
<tr>
<th>i. Lack of controls for auditing work completed, including inspections, for employees or subcontractors</th>
<th>ii. Through an established and functioning audit process to manage and confirm work completed by subcontractors, where contractor activity is subject to semi-automated audits using technologies capable of sampling the contractor's work (e.g., LiDAR scans, photographic evidence)</th>
<th>iii. Through an established and demonstrably functioning audit process to manage and confirm work completed by subcontractors, where contractor activity is subject to automated audits using technologies capable of sampling the contractor's work (e.g., LiDAR scans, photographic evidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>by Start of 2023</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.V.b Do contractors follow the same processes and standards as utility's own employees?

<table>
<thead>
<tr>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>by Start of 2023</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.V.c How frequently is QA/QC information used to identify deficiencies in quality of work performance and inspections performance?

<table>
<thead>
<tr>
<th>i. Never</th>
<th>ii. Sporadically</th>
<th>iii. On an ad hoc basis</th>
<th>iv. Regularly</th>
<th>v. Real-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.V.d How is work and inspections that do not meet utility-prescribed standards remediated?
D.V.e Are workforce management software tools used to manage and confirm work completed by subcontractors?

E. Vegetation management and inspections

E.I Vegetation inventory and condition assessments

E.I.a What information is captured in the inventory?

- v. Centralized inventory of vegetation clearances, including individual vegetation species and their expected growth rate, as well as individual high risk-trees across grid. Includes up-to-date tree health and moisture content to determine risk of ignition and propagation.
- iv. Centralized inventory of vegetation clearances, including individual vegetation species and their expected growth rate, as well as individual high risk-trees across grid.
- iii. Centralized inventory of vegetation clearances, including predominant vegetation species and individual high risk-trees across grid.
- ii. Centralized inventory of vegetation clearances based on most recent inspection.
- i. There is no vegetation inventory sufficient to determine vegetation clearances across the grid at the time of the last inspection.
E.I.b How frequently is the inventory updated?

- Never (●)
- Annually (○)
- Within 1 month of collection (○)
- Within 1 week of collection (○)
- Within 1 day of collection (○)

E.I.c Are inspections independently verified by third party experts?

- No (●)
- Yes (○)

E.I.d How granular is the inventory?

- Regional (○)
- Circuit-based (○)
- Span-based (○)
- Asset-based (●)

E.II Vegetation inspection cycle

Capability 22

E.II.a How frequent are all types of vegetation inspections?

- Less frequent than regulations require (●)
- Consistent with minimum regulatory requirements (○)
- Above minimum regulatory requirements, with more frequent inspections for highest risk areas (○)

E.II.b How are vegetation inspections scheduled?

- Based on annual or periodic schedules (●)
- Based on up-to-date static maps of predominant vegetation species and environment (○)
- Risk, as determined by predictive modeling of vegetation growth and growing conditions (○)
- Need, as independently determined by predictive modeling of vegetation growth and growing conditions (○)

E.II.c What are the inputs to scheduling vegetation inspections?
E.III Vegetation inspection effectiveness

Capability 23

E.III.a What items are captured within inspection procedures and checklists?

<table>
<thead>
<tr>
<th>i. At least annually-updated static maps of vegetation and environment</th>
<th>ii. Up to date, static maps of vegetation and environment, as well as data on annual growing conditions</th>
<th>iii. Predictive modeling of vegetation growth</th>
<th>iv. Predictive modeling of vegetation growth supplemented with continuous monitoring by sensors</th>
<th>v. Predictive modeling of vegetation growth supplemented with continuous monitoring by sensors and considering tree health and other vegetation risk factors for more frequent inspections in less healthy areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.III.b How are procedures and checklists determined?

<table>
<thead>
<tr>
<th>i. Patrol, detailed, enhanced, and other inspection procedures and checklists do not include all items required by statute and regulations</th>
<th>ii. Patrol, detailed, enhanced, and other inspection procedures and checklists include all items required by statute and regulations, and includes vegetation types typically responsible for ignitions and near misses</th>
<th>iii. Based on predictive modeling based on vegetation and equipment type, age, and condition and validated by independent experts, with dynamic adjustments in real time based on deficiencies found during inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E.III.c At what level of granularity are the depth of checklists, training, and procedures customized?

- i. Across the service territory
- ii. Across a region
- iii. At the circuit level
- iv. At the span level
- v. At the asset level

E.IV Vegetation grow-in mitigation

Capability 24

E.IV.a How does utility clearance around lines and equipment perform relative to expected standards?

- i. Utility often fails to maintain minimum statutory and regulatory clearances around all lines and equipment
- ii. Utility meet minimum statutory and regulatory clearances around all lines and equipment
- iii. Utility exceeds minimum statutory and regulatory clearances around all lines and equipment

E.IV.b Does utility meet or exceed minimum statutory or regulatory clearances during all seasons?

- i. No
- ii. Yes

E.IV.c What modeling is used to guide clearances around lines and equipment?

- i. Ignition risk modeling
- ii. Ignition and propagation risk modeling
- iii. None of the above

E.IV.d What biological modeling is used to guide clearances around lines and equipment?

- i. Species growth rates and species limb failure rates
- ii. Species growth rates and species limb failure rates, cross referenced with local climatological conditions
- iii. None of the above
E.IV.e Are community organizations engaged in setting local clearances and protocols?

- i. No
- ii. Yes

E.IV.f Does the utility remove vegetation waste along its right of way across the entire grid?

- i. No
- ii. Yes

E.IV.g How long after cutting vegetation does the utility remove vegetation waste along right of way?

- i. Not at all
- ii. Longer than 1 week
- iii. Within 1 week or less
- iv. On the same day

E.IV.h Does the utility work with local landowners to provide a cost-effective use for cutting vegetation?

- i. No
- ii. Yes

E.IV.i Does the utility work with partners to identify new cost-effective uses for vegetation, taking into consideration environmental impacts and emissions of vegetation waste?

- i. No
- ii. Yes

E.V Vegetation fall-in mitigation

Capability 25

E.V.a Does the utility have a process for treating vegetation outside of...
right of ways?

<table>
<thead>
<tr>
<th></th>
<th>i. Utility does not remove vegetation outside of right of way</th>
<th>ii. Utility removes some vegetation outside of right of ways</th>
<th>iii. Utility systematically removes vegetation outside of right of way</th>
<th>iv. Utility systematically removes vegetation outside of right of way, informing relevant communities of removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

E.V.b How is potential vegetation that may pose a threat identified?

<table>
<thead>
<tr>
<th></th>
<th>i. No specific process in place to systematically identify trees likely to pose a risk</th>
<th>ii. Based on the height of trees with potential to make contact with electric lines and equipment</th>
<th>iii. Based on the probability and consequences of impact on electric lines and equipment as determined by risk modeling</th>
<th>iv. Based on the probability and consequences of impact on electric lines and equipment as determined by risk modeling, as well as regular and accurate systematic inspections for high-risk trees outside the right of way or environmental and climatological conditions contributing to increased risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

E.V.c Is vegetation removed with cooperation from the community?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

E.V.d Does the utility remove vegetation waste outside its right of way across the entire grid?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

E.V.e How long after cutting vegetation does the utility remove vegetation waste outside its right of way?

<table>
<thead>
<tr>
<th></th>
<th>ii. Longer than 1 week or more</th>
<th>iii. Within 1 week or more</th>
<th>iv. On the same day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E.V.f Does the utility work with local landowners to provide a cost-effective use for cutting vegetation?

- i. No
- ii. Yes

Current Year
by Start of 2023

E.V.g Does the utility work with partners to identify new cost-effective uses for vegetation, taking into consideration environmental impacts and emissions of vegetation waste?

- i. No
- ii. Yes

Current Year
by Start of 2023

E.VI QA/QC for vegetation maintenance

Capability 26

E.VI.a How is contractor and employee activity audited?

- i. Lack of controls for auditing work completed, including inspections, for employees or subcontractors
- ii. Through an established and functioning audit process to manage and confirm work completed by subcontractors
- iii. Through an established and demonstrably functioning audit process to manage and confirm work completed by subcontractors, where contractor activity is subject to semi-automated audits using technologies capable of sampling the contractor's work (e.g., LiDAR scans, photographic evidence)
- iv. Through an established and demonstrably functioning audit process to manage and confirm work completed by subcontractors, where contractor activity is subject to automated audits using technologies capable of sampling the contractor's work (e.g., LiDAR scans, photographic evidence)

Current Year
by Start of 2023

E.VI.b Do contractors follow the same processes and standards as utility's own employees?

- i. No
- ii. Yes
E.VI.c How frequently is QA/QC information used to identify deficiencies in quality of work performance and inspections performance?

- i. Never
- ii. Sporadically
- iii. On an ad hoc basis
- iv. Regularly
- v. Real-time

Current Year by Start of 2023

E.VI.d How is work and inspections that do not meet utility-prescribed standards remediated?

- i. Lack of effective remediation for ineffective inspections or low-quality work
- ii. QA/QC information is used to identify systemic deficiencies in quality of work and inspections
- iii. QA/QC information is used to identify systemic deficiencies in quality of work and inspections, and recommend training based on weaknesses
- iv. QA/QC information is used to identify systemic deficiencies in quality of work and inspections, grade individuals, and recommend specific pre-made and tested training based on weaknesses

Current Year by Start of 2023

E.VI.e Are workforce management software tools used to manage and confirm work completed by subcontractors?

- i. No
- ii. Yes

Current Year by Start of 2023

F. Grid operations and protocols

F.I Protective equipment and device settings

Capability 27

F.I.a How are grid elements adjusted during high threat weather conditions?

- i. Utility does not make changes to adjustable equipment in response to high wildfire threat conditions
- ii. Utility increases sensitivity of risk reduction elements during high threat weather conditions
- iii. Utility increases sensitivity of risk reduction elements during high threat weather conditions and monitors near misses
- iv. Utility increases sensitivity of risk reduction elements based on risk mapping and monitors near misses
F.I.b Is there an automated process for adjusting sensitivity of grid elements and evaluating effectiveness?

Clarification: For clarification on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3 or 4

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. No automated process</th>
<th>ii. Partially automated process</th>
<th>iii. Fully automated process</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>![Circle]</td>
<td>![Circle]</td>
<td>![Circle]</td>
</tr>
</tbody>
</table>

F.I.c Is there a predetermined protocol driven by fire conditions for adjusting sensitivity of grid elements?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>![Circle]</td>
<td>![Circle]</td>
</tr>
</tbody>
</table>

F.II Incorporating ignition risk factors in grid control
Capability 28

F.II.a Does the utility have a clearly explained process for determining whether to operate the grid beyond current or voltage designs?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>![Circle]</td>
<td>![Circle]</td>
</tr>
</tbody>
</table>

F.II.b Does the utility have systems in place to automatically track operation history including current, loads, and voltage throughout the grid at the circuit level?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Start of 2023</td>
<td>![Circle]</td>
<td>![Circle]</td>
</tr>
</tbody>
</table>

F.II.c Does the utility use predictive modeling to estimate the expected
life and make equipment maintenance, rebuild, or replacement decisions based on grid operating history, and is that model reviewed?

<table>
<thead>
<tr>
<th>i. Modeling is not used</th>
<th>ii. Modeling is used, but not evaluated by external experts</th>
<th>iii. Modeling is used, and the model is evaluated by external experts and verified by historical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F.II.d When does the utility operate the grid above rated voltage and current load?

<table>
<thead>
<tr>
<th>i. During any conditions</th>
<th>ii. Only in conditions that are unlikely to cause wildfire</th>
<th>iii. Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F.III PSPS op. model and consequence mitigation

Capability 29

F.III.a How effective is PSPS event forecasting?

<table>
<thead>
<tr>
<th>i. PSPS event frequently forecasted incorrectly</th>
<th>ii. PSPS event generally forecasted accurately with fewer than 50% of predictions being false positives</th>
<th>iii. PSPS event generally forecasted accurately with fewer than 33% of predictions being false positives</th>
<th>iv. PSPS event generally forecasted accurately with fewer than 25% of predictions being false positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F.III.b What share of customers are communicated to regarding forecasted PSPS events?

<table>
<thead>
<tr>
<th>i. Affected customers are poorly communicated to, with a significant portion not communicated to at all</th>
<th>ii. PSPS event are communicated to >95% of affected customers and >99% of medical baseline customers in advance of PSPS action</th>
<th>iii. PSPS event are communicated to >98% of affected customers and >99.5% of medical baseline customers in advance of PSPS action</th>
<th>iv. PSPS event are communicated to >99% of affected customers and >99.9% of medical baseline customers in advance of PSPS action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
F.III.c During PSPS events, what percent of customers complain?

- i. 1% or more
- ii. Less than 1%
- iii. Less than 0.5%

F.III.d During PSPS events, does the utility's website go down?

- i. No
- ii. Yes

F.III.e During PSPS events, what is the average downtime per customer?

- i. More than 1 hour
- ii. Less than 1 hour
- iii. Less than 0.5 hours
- iv. Less than 0.25 hours
- v. Less than 0.1 hours

F.III.f Are specific resources provided to customers to alleviate the impact of the power shutoff (e.g., providing backup generators, supplies, batteries, etc.)?

- i. No
- ii. Yes

F.IV Protocols for PSPS invitation

Capability 30

F.IV.a Does the utility have explicit thresholds for activating a PSPS?

iii. Utility has explicit policies and explanation for the thresholds above which PSPS is activated, but maintains grid in sufficiently low risk condition to not require any PSPS activity, though may dep
i. Utility has **no clearly explained threshold** for PSPS activation

ii. Utility has explicit policies and explanation for the thresholds above which PSPS is activated as a measure of last resort activity, though may de-energize specific circuits upon detection of damaged condition of electric lines and equipment, and maintains grid in sufficiently low risk condition to not require any PSPS activity, though may de-energize specific

- Current Year
- by Start of 2023

F.IV.b Which of the following does the utility take into account when making PSPS decisions? Select all that apply

i. SME opinion

- Current Year
- by Start of 2023

ii. A partially automated system which recommends circuits for which PSPS should be activated and is validated by SMEs

- Current Year
- by Start of 2023

F.IV.c Under which circumstances does the utility de-energize circuits? Select all that apply.

i. Upon detection of damaged conditions of electric equipment

- Current Year
- by Start of 2023

ii. When circuit presents a safety risk to suppression or other personnel

- Current Year
- by Start of 2023

iii. When equipment has come into contact with foreign objects posing ignition risk

- Current Year
- by Start of 2023

iv. Additional reasons not listed

- Current Year
- by Start of 2023

F.IV.d Given the condition of the grid, with what probability does the utility expect any large scale PSPS events affecting more than 10,000 people to occur in the coming year?

Clarification: For the 'Current Year' response option, please take “the coming year” as 2021. For the 'by Start of 2023' response option, please take “the coming year” as 2023.

i. Less than 5% - Grid is in sufficiently low risk condition that PSPS events will not be required, and the only circuits which may require de-energization have sufficient redundancy that energy supply to customers will not be disrupted

- Current Year
- by Start of 2023

ii. Greater than 5% - Grid condition paired with risk indicates that PSPS may be necessary in 2021 in some areas

- Current Year
- by Start of 2023

F.V Protocols for PSPS re-energization

Capability 31

F.V.a Is there a process for inspecting de-energized sections of the grid
F.V.b How automated is the process for inspecting de-energized sections of the grid prior to re-energization?

Clarification: For explanation on level of automation please refer to the 'level of systematization and automation' in Table 2 of the Maturity Model. (i) in this case corresponds to level 0; (ii) corresponds to level 1 or 2; (iii) corresponds to level 3; and (iv) corresponds to level 4

F.V.c What is the average amount of time that it takes you to re-energize your grid from a PSPS once weather has subsided to below your de-energization threshold?

F.V.d What level of understanding of probability of ignitions after PSPS events does the utility have across the grid?

F.VI Ignition prevention and suppression

Capability 32

F.VI.a Does the utility have defined policies around the role of workers in
F.VI.a Does the utility have defined policies around the role of workers in suppressing ignitions?

- i. Utility has no policies governing what crews' roles are in suppressing ignitions
- ii. Utilities have explicit policies about the role of crews at the site of ignition
- iii. Utilities have explicit policies about the role of crews, including contractors and subcontractors, at the site of ignition

Current Year by Start of 2023

F.VI.b What training and tools are provided to workers in the field?

- i. Crews are untrained
- ii. Training and communications tools are provided to immediately report ignitions caused by workers or in immediate vicinity of workers
- iii. All criteria in option (ii) met; in addition, suppression tools and training to suppress small ignitions caused by workers or in immediate vicinity of workers are provided
- iv. All criteria in option (iii) met; in addition, suppression professionals is provided
- v. All criteria in option (iv) met and apply to contractors as well as utility workers

Current Year by Start of 2023

F.VI.c In the events where workers have encountered an ignition, have any Cal/OSHA reported injuries or fatalities occurred in the last year?

Clarification: For this year, please identify whether any major injuries or fatalities have occurred in 2020. For three years from now, please specify whether you think there is a chance that major injuries or fatalities could occur in 2023.

- i. No
- ii. Yes

Current Year by Start of 2023

F.VI.d Does the utility provide training to other workers at other utilities and outside the utility industry on best practices to minimize, report and suppress ignitions?

Clarification: An example of workers outside utility industry might be workers at a vegetation management company who prune trees near utility equipment

- i. No
- ii. Yes

Current Year by Start of 2023
G. Data governance

G.I Data collection and curation

Capability 33

G.I.a Does the utility have a centralized database of situational, operational, and risk data?

Clarification: Question is asking whether utility centralizes most of its situational, operational, and risk data in a single database

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>⬜</td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>⬜</td>
<td></td>
</tr>
</tbody>
</table>

G.I.b Is the utility able to use advanced analytics on its centralized database of situational, operational, and risk data to make operational and investment decisions?

Clarification: In this case, advanced analytics refers to analysis integrating different types of data from this centralized database in a sufficiently reliable way to create a detailed, quantitative and holistic picture of tradeoffs to be weighed in operational or investment decisions

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>⬜</td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>⬜</td>
<td></td>
</tr>
</tbody>
</table>

G.I.c Does the utility collect data from all sensored portions of electric lines, equipment, weather stations, etc.?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>⬜</td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>⬜</td>
<td></td>
</tr>
</tbody>
</table>

G.I.d Is the utility's database of situational, operational, and risk data able to ingest and share data using real-time API protocols with a wide variety of stakeholders?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>⬜</td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>⬜</td>
<td></td>
</tr>
</tbody>
</table>
G.I.e Does the utility identify highest priority additional data sources to improve decision making?

Current Year
by Start of 2023

i. No
ii. Yes

iii. Yes, with plans to incorporate these into centralized database of situational, operational and risk data

G.I.f Does the utility share best practices for database management and use with other utilities in California and beyond?

Current Year
by Start of 2023

i. No
ii. Yes

iii. Yes, with specific processes to do so in place

G.II Data transparency and analytics

Capability 34

G.II.a Is there a single document cataloguing all fire-related data and algorithms, analyses, and data processes?

Current Year
by Start of 2023

i. No
ii. Yes

G.II.b Is there an explanation of the sources, cleaning processes, and assumptions made in the single document catalog?

Current Year
by Start of 2023

i. No
ii. Yes

G.II.c Are all analyses, algorithms, and data processing explained and documented? Is there a system for sharing data in real time across multiple levels of permissions?

i. Analyses, algorithms, and data processing are documented and explained, including sensitivities for

iv. Analyses, algorithms, and data processing are documented and explained, including sensitivities for
G.II.d Is there a system for sharing data in real time across multiple levels of permissions?

i. No system capable of sharing data in real time across multiple levels of permissions

ii. System is capable of sharing across at least two levels of permissions, including a.) utility-regulator permissions, and b.) first responder permissions

iii. System is capable of sharing across at least three levels of permissions, including a.) utility-regulator permissions, b.) first responder permissions, and c.) public data sharing

G.II.e Are the most relevant wildfire related data algorithms disclosed?

Clarification: Question is asking whether all algorithms or decision making process used to inform decision making around investment choices, risk mitigation choices, and emergency response are disclosed

i. No

ii. Yes, disclosed to regulators and other relevant stakeholders upon request

iii. Yes, disclosed publicly in WMP upon request

iv. Disclosed publicly as information becomes available (regardless of regulatory request)

G.III Near-miss tracking

Capability 35

G.III.a Does the utility track near miss data for all near misses with wildfire ignition potential?

Clarification: Recall that near miss is defined as an event with significant probability of ignition, including wires down, contacts with objects, line slap, events with evidence of significant heat generation, and other events that cause sparking or have the potential to cause ignition.
G.III.b Based on near miss data captured, is the utility able to simulate wildfire potential given an ignition based on event characteristics, fuel loads, and moisture?

- i. No
- ii. Yes

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G.III.c Does the utility capture data related to the specific mode of failure when capturing near-miss data?

- i. No
- ii. Yes

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G.III.d Is the utility able to predict the probability of a near miss in causing an ignition based on a set of event characteristics?

- i. No
- ii. Yes

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G.III.e Does the utility use data from near misses to change grid operation protocols in real time?

- i. No
- ii. Yes

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G.IV Data sharing with the research community

Capability 36

G.IV.a Does the utility make disclosures and share data?

Clarification: In this case, ‘disclosures’ refer to disclosures to the CPUC and to the public

- i. Utility fails to make disclosures
- ii. Utility makes required disclosures, but does not share data beyond what is required
- iii. Utility makes required disclosures and shares data beyond what is required

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G.IV.b Does the utility in engage in research?

Clarification: Here, ‘research’ broadly refers to collaborative research (e.g. with other
utilities, academics, or the government) or to independent research where the findings are made available outside parties (such as academics, other utilities, the government or the public).

<table>
<thead>
<tr>
<th></th>
<th>i. Utility does not participate in collaborative research</th>
<th>ii. Utility participates in independent research</th>
<th>iii. Utility funds and participates in both independent and collaborative research</th>
<th>iv. Utility funds and participates in both independent and collaborative research, and ensures that research, where possible, is abstracted and applied to other utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[x]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

G.IV.c What subjects does utility research address?

<table>
<thead>
<tr>
<th></th>
<th>i. Utility ignited wildfires</th>
<th>ii. Utility ignited wildfires and risk reduction initiatives</th>
<th>iii. None of the above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[]</td>
<td>[]</td>
<td>[x]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

G.IV.d Does the utility promote best practices based on latest independent scientific and operational research?

Clarification: Promoting best practices could take various forms – for example, writing and publicly releasing a report or detailing results achieved when a new method of tool was piloted, including which techniques were more or less effective

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[x]</td>
<td>[]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[x]</td>
<td>[]</td>
</tr>
</tbody>
</table>

H. Resource allocation methodology

H.I Scenario analysis across different risk levels

Capability 37

H.I.a For what risk scenarios is the utility able to provide projected cost and total risk reduction potential?
H.I.b For what level of granularity is the utility able to provide projections for each scenario?

- Territory-level or greater
- Region level
- Circuit level
- Span level
- Asset level

H.I.c Does the utility include a long term (e.g., 6-10 year) risk estimate taking into account macro factors (climate change, etc.) as well as planned risk reduction initiatives in its scenarios?

- No
- Yes

H.I.d Does the utility provide an estimate of impact on reliability factors in its scenarios?

Clarification: Reliability factors here refer to factors impacting reliability of service to customers.

- No
- Yes

H.II Presentation of relative risk spend efficiency for portfolio of initiatives

 Capability 38

H.II.a Does the utility present accurate qualitative rankings for its initiatives by risk spend efficiency?

- No
- Yes

H.II.b What initiatives are captured in the ranking of risk spend efficiency?

- Common commercial
- All commercial initiatives and
- None of the above
H.II.c Does the utility include figures for present value cost and project risk reduction impact of each initiative, clearly documenting all assumptions (e.g. useful life, discount rate, etc.)?

Current Year
by Start of 2023

H.II.d Does the utility provide an explanation of their investment in each particular initiative?

Clarification: Reliability factors here refer to factors impacting reliability of service to customers

Current Year
by Start of 2023

H.II.e At what level of granularity is the utility able to provide risk efficiency figures?

Current Year
by Start of 2023

H.III Process for determining risk spend efficiency of vegetation management initiatives

 Capability 39

H.III.a How accurate of a risk spend efficiency calculation can the utility provide?
H.III.b At what level can estimates be prepared?

- i. Less granular than regional, or not at all
- ii. Regional
- iii. Circuit-based
- iv. Span-based
- v. Asset-based

H.III.c How frequently are estimates updated?

- i. Never
- ii. Less frequently than annually
- iii. Annually or more frequently

H.III.d What vegetation management initiatives does the utility include within its evaluation?

- i. None
- ii. Some
- iii. Most
- iv. All
- v. All, supported by independent testing

H.III.e Can the utility evaluate risk reduction synergies from combination of various initiatives?

- i. No
- ii. Yes

H.IV Process for determining risk spend efficiency of system hardening initiatives

Capability 40

H.IV.a How accurate of a risk spend efficiency calculation can the utility provide?
The relative risk spend efficiency of hardening initiatives

H.IV.b At what level can estimates be prepared?

- Less granular than regional, or not at all
- Regional
- Circuit-based
- Span-based
- Asset-based

H.IV.c How frequently are estimates updated?

- Never
- Less frequently than annually
- Annually or more frequently

H.IV.d What grid hardening initiatives are included in the utility risk spend efficiency analysis?

- None
- Some commercially available grid hardening initiatives
- Most commercially available grid hardening initiatives
- All commercially available grid hardening initiatives
- All commercially available grid hardening initiatives, as well as those initiatives that are lab tested

H.IV.e Can the utility evaluate risk reduction effects from the combination of various initiatives?

- No
- Yes

H.V Portfolio-wide initiative allocation methodology

Capability 41

H.V.a To what extent does the utility allocate capital to initiatives based on risk-spend efficiency (RSE)?

- Accurate RSE
- Most RSE
- All RSE
- None of the above
H.V.b What information does the utility take into account when generating RSE estimates?

i. Average estimate of RSE by initiative category

ii. Specific information by initiative, including state of equipment and location where initiative will be implemented

iii. Specific information by initiative at the asset level, including state of specific assets and location where initiative will be implemented

H.V.c How does the utility verify RSE estimates?

i. Utility does not verify RSE estimates

ii. RSE estimates are verified by historical or experimental pilot data and confirmed by independent experts or other utilities in CA

H.V.d Does the utility take into consideration impact on safety, reliability, and other priorities when making spending decisions?

i. No

ii. Yes

H.VI Portfolio-wide innovation in new wildfire initiatives
Capability 42

H.VI.a How does the utility develop and evaluate the efficacy of new wildfire initiatives?
H.VI.b How does the utility develop and evaluate the risk spend efficiency of new wildfire initiatives?

Clarification: TCO is total cost of ownership over the expected useful life of an asset, including purchase, operation and maintenance. In this question, total cost of ownership refers to the spend portion of the evaluation of risk spend efficiency, while risk reduction is evaluated separately.

H.VI.c At what level of granularity does the utility measure the efficacy of new wildfire initiatives?

H.VI.d Are the reviews of innovative initiatives audited by independent parties?

Clarification: Reviews here refer to findings evaluating innovative initiatives which would assist another utility in making a decision about whether to implement that initiative and help them determine how to do so effectively. Criteria might include but are not limited to the following: technical feasibility, effectiveness, risk spend efficiency, ease of implementation and comparison to alternative options.

H.VI.e Does the utility share the findings of its evaluation of innovative initiatives with other utilities, academia, and the general public?
I. Emergency planning and preparedness

I.1 Wildfire plan integrated with overall disaster/emergency plan

Capability 43

I.1.a Is the wildfire plan integrated with overall disaster and emergency plans?

Clarification: If the utility’s wildfire mitigation plan is an integrated component of an overall disaster and emergency plan then the overall plan considers at least the compound effects of risks in both directions – for example, the additional risk of fire posed by an earthquake and how to manage any compounding effects.

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Wildfire plan is a component of overall plan</th>
<th>iii. Wildfire plan is an integrated component of overall plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

I.1.b Does the utility run drills to audit the viability and execution of its wildfire plans?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

I.1.c Is the impact of confounding events or multiple simultaneous disasters considered in the planning process?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

I.1.d Is the plan integrated with disaster and emergency preparedness plans of other relevant stakeholders (e.g., CAL FIRE, Fire Safe Councils, etc.)?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>
I.I.e Does the utility take a leading role in planning, coordinating, and integrating plans across stakeholders?

i. No

ii. Yes

Current Year by Start of 2023

I.II Plan to restore service after wildfire related outage

Capability 44

I.II.a Are there detailed and actionable procedures in place to restore service after a wildfire related outage?

i. No

ii. Yes

Current Year by Start of 2023

I.II.b Are employee and subcontractor crews trained in, and aware of, plans?

i. No

ii. Yes

Current Year by Start of 2023

I.II.c To what level are procedures to restore service after a wildfire-related outage customized?

<table>
<thead>
<tr>
<th>I. Territory-wide</th>
<th>ii. Region level</th>
<th>iii. Circuit level</th>
<th>iv. Span level</th>
<th>v. Asset level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I.II.d Is the customized procedure to restore service based on topography, vegetation, and community needs?

i. No

ii. Yes

Current Year by Start of 2023

I.II.e Is there an inventory of high risk spend efficiency resources available for repairs?

Clarification: Question is asking whether the resources, components and tools that the utility has available for repairs, maintenance, and unexpected replacement are the most risk spend efficient options on the market.
I.III Emergency community engagement during and after wildfire
Capability 45

I.III.a Does the utility provide clear and substantially complete communication of available information relevant to affected customers?
Clarification: Does the utility provide all available information which could be relevant to affected customers in a way that customers can receive in real time and easily understand?

<table>
<thead>
<tr>
<th>Current Year by Start of 2023</th>
<th>i. No</th>
<th>ii. Yes</th>
<th>iii. Yes, along with referrals to other agencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

I.III.b What percent of affected customers receive complete details of available information?

<table>
<thead>
<tr>
<th>Current Year by Start of 2023</th>
<th>i. ≤95% of customers</th>
<th>ii. >95% of customers</th>
<th>iii. >98% of customers</th>
<th>iv. >99% of customers</th>
<th>v. >99.9% of customers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

I.III.c What percent of affected medical baseline customers receive complete details of available information?

<table>
<thead>
<tr>
<th>Current Year by Start of 2023</th>
<th>i. ≤99% of medical baseline customers</th>
<th>ii. >99% of medical baseline customers</th>
<th>iii. >99.5% of medical baseline customers</th>
<th>iv. >99.9% of medical baseline customers</th>
<th>v. 100% of medical baseline customers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

I.III.d How does the utility assist where helpful with communication of information related to power outages to customers?

<table>
<thead>
<tr>
<th>Current Year by Start of 2023</th>
<th>i. Through availability of relevant evacuation information and links on website and toll-free telephone number and assisting disaster response professionals as requested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ii. Through availability of relevant evacuation information and links on website and toll-free telephone number, and assisting disaster response professionals as requested</td>
</tr>
<tr>
<td></td>
<td>iii. None of the above</td>
</tr>
</tbody>
</table>
I.III.e How does the utility engage with other emergency management agencies during emergency situations?

- i. Utility does not engage with other agencies
- ii. Utility engages with other agencies in an ad hoc manner
- iii. Utility has detailed and actionable established protocols for engaging with emergency management organizations

I.III.f Does the utility communicate and coordinate resources to communities during emergencies (e.g., shelters, supplies, transportation etc.)?

- i. No
- ii. Yes

I.IV Protocols in place to learn from wildfire events

- Capability 46

I.IV.a Is there a protocol in place to record the outcome of emergency events and to clearly and actionably document learnings and potential process improvements?

- i. No
- ii. Yes

I.IV.b Is there a defined process and staff responsible for incorporating learnings into emergency plan?

- i. No
- ii. Yes

I.IV.c Once updated based on learnings and improvements, is the updated plan tested using "dry runs" to confirm its effectiveness?

- i. No
- ii. Yes
I.IV.d Is there a defined process to solicit input from a variety of other stakeholders and incorporate learnings from other stakeholders into the emergency plan?

I.V Processes for continuous improvement after wildfire and PSPS events

Capability 47

I.V.a Does the utility conduct an evaluation or debrief process after a wildfire?

I.V.b Does the utility conduct a customer survey and utilize partners to disseminate requests for stakeholder engagement?

I.V.c In what other activities does the utility engage?

I.V.d Does the utility share with partners findings about what can be improved?
I.V.e Are feedback and recommendations on potential improvements made public?

 i. No
 ○
 ○
 ii. Yes
 ○
 ○

 Current Year
 ○
 ○
 by Start of 2023
 ○
 ○

I.V.f Does the utility conduct proactive outreach to local agencies and organizations to solicit additional feedback on what can be improved?

 i. No
 ○
 ○
 ii. Yes
 ○
 ○

 Current Year
 ○
 ○
 by Start of 2023
 ○
 ○

I.V.g Does the utility have a clear plan for post-event listening and incorporating lessons learned from all stakeholders?

 i. No
 ○
 ○
 ii. Yes
 ○
 ○

 Current Year
 ○
 ○
 by Start of 2023
 ○
 ○

I.V.h Does the utility track the implementation of recommendations and report upon their impact?

Clarification: Recommendations here refer to recommendations from customers, local agencies, organizations and other stakeholders received following a wildfire or PSPS event

 i. No
 ○
 ○
 ii. Yes
 ○
 ○

 Current Year
 ○
 ○
 by Start of 2023
 ○
 ○

I.V.i Does the utility have a process to conduct reviews after wildfires in other the territory of other utilities and states to identify and address areas of improvement?

 i. No
 ○
 ○
 ii. Yes
 ○
 ○

 Current Year
 ○
 ○
 by Start of 2023
 ○
 ○

J. Stakeholder cooperation and community engagement

J.I Cooperation and best practice sharing with other utilities
J.I.a Does the utility actively work to identify best practices from other utilities through a clearly defined operational process?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes, from other California utilities</th>
<th>ii. Yes, from other global utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.I.b Does the utility successfully adopt and implement best practices identified from other utilities?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.I.c Does the utility seek to share best practices and lessons learned in a consistent format?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.I.d Does the utility share best practices and lessons via a consistent and predictable set of venues/media?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.I.e Does the utility participate in annual benchmarking exercises with other utilities to find areas for improvement?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.I.f Has the utility implemented a defined process for testing lessons learned from other utilities to ensure local applicability?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by Start of 2023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
J.II Engagement with communities on utility wildfire mitigation initiatives

Capability 49

J.II.a Does the utility have a clear and actionable plan to develop or maintain a collaborative relationship with local communities?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

J.II.b Are there communities in HFTD areas where meaningful resistance is expected in response to efforts to mitigate fire risk (e.g. vegetation clearance)?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

J.II.c What percent of landowners are non-compliant with utility initiatives (e.g., vegetation management)?

<table>
<thead>
<tr>
<th></th>
<th>i. More than 5%</th>
<th>ii. Less than 5%</th>
<th>iii. Less than 2%</th>
<th>iv. Less than 1%</th>
<th>v. Less than 0.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

J.II.d What percent of landowners complain about utility initiatives (e.g., vegetation management)?

<table>
<thead>
<tr>
<th></th>
<th>i. More than 5%</th>
<th>ii. Less than 5%</th>
<th>iii. Less than 2%</th>
<th>iv. Less than 1%</th>
<th>v. Less than 0.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

J.II.e Does the utility have a demonstratively cooperative relationship with communities containing >90% of the population in HFTD areas (e.g. by being recognized by other agencies as having a cooperative relationship with those communities in HFTD areas)?

<table>
<thead>
<tr>
<th></th>
<th>i. No</th>
<th>ii. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>by Start of 2023</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>
J.II.f Does utility have records of landowners throughout communities containing >90% of the population in HFTD areas reaching out to notify of risks, dangers or issues in the past year?

Clarification: For this year, please identify whether the question holds true for 2020. For three years from now, specify whether you expect the question to hold true in 2023.

J.III Engagement with LEP and AFN populations

Capability 50

J.III.a Can the utility provide a plan to partner with organizations representing Limited English Proficiency (LEP) and Access & Functional Needs (AFN) communities?

J.III.b Can the utility outline how these partnerships create pathways for implementing suggested activities to address the needs of these communities?

J.III.c Can the utility point to clear examples of how those relationships have driven the utility’s ability to interact with and prepare LEP & AFN communities for wildfire mitigation activities?

J.III.d Does the utility have a specific annually-updated action plan further reduce wildfire and PSPS risk to LEP & AFN communities?
J.IV. Collaboration with emergency response agencies
 Capability 51

J.IV.a What is the cooperative model between the utility and suppression agencies?

 i. Utility does not sufficiently cooperate with suppression agencies
 ii. Utility cooperates with suppression agencies by notifying them of ignitions
 iii. Utility cooperates with suppression agencies by working cooperatively with them to detect ignitions, in addition to notifying them of ignitions as needed

Current Year
by Start of 2023

J.IV.b In what areas is the utility cooperating with suppression agencies

 i. High risk areas
 ii. All areas under utility control
 iii. Throughout utility service areas
 iv. None of the above

Current Year
by Start of 2023

J.IV.c Does the utility accurately predict and communicate the forecasted fire propagation path using available analytics resources and weather data?

 i. No
 ii. Yes

Current Year
by Start of 2023

J.IV.d Does the utility communicate fire paths to the community as requested?

 i. No
 ii. Yes

Current Year
by Start of 2023

J.IV.e Does the utility work to assist suppression crews logistically, where possible?

 i. No
 ii. Yes

Current Year
by Start of 2023
J.V. Collaboration on wildfire mitigation planning with stakeholders

Capability 52

J.V.a Where does the utility conduct substantial fuel management?

Where does the utility conduct substantial fuel management?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Utility does not conduct fuel management</td>
<td></td>
</tr>
<tr>
<td>ii. Utility conducts fuel management along rights of way</td>
<td></td>
</tr>
<tr>
<td>iii. Utility conducts fuel management throughout service area</td>
<td></td>
</tr>
</tbody>
</table>

J.V.b Does the utility engage with other stakeholders as part of its fuel management efforts?

Does the utility engage with other stakeholders as part of its fuel management efforts?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Utility does not coordinate with broader fuel management efforts by other stakeholders</td>
<td></td>
</tr>
<tr>
<td>ii. Utility shares fuel management plans with other stakeholders and works with other stakeholders conducting fuel management concurrently</td>
<td></td>
</tr>
<tr>
<td>iii. Utility shares fuel management activities, including adjusting plans, to cooperate with other stakeholders state-wide to focus on areas that would have the biggest impact in reducing wildfire risk</td>
<td></td>
</tr>
<tr>
<td>iv. Utility shares fuel management plans with other stakeholders, and pro-actively coordinates fuel management activities, including adjusting plans, to cooperate with other stakeholders state-wide to focus on areas that would have the biggest impact in reducing wildfire risk</td>
<td></td>
</tr>
<tr>
<td>v. Utility shares fuel management plans with other stakeholders, and pro-actively coordinates fuel management activities, including adjusting plans, to cooperate with other stakeholders state-wide to focus on areas that would have the biggest impact in reducing wildfire risk</td>
<td></td>
</tr>
</tbody>
</table>

J.V.c Does the utility cultivate a native vegetative ecosystem across territory that is consistent with lower fire risk?

Does the utility cultivate a native vegetative ecosystem across territory that is consistent with lower fire risk?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. No</td>
<td></td>
</tr>
<tr>
<td>ii. Yes</td>
<td></td>
</tr>
</tbody>
</table>

J.V.d Does the utility fund local groups (e.g., fire safe councils) to support fuel management?

Does the utility fund local groups (e.g., fire safe councils) to support fuel management?

<table>
<thead>
<tr>
<th>Current Year</th>
<th>by Start of 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. No</td>
<td></td>
</tr>
<tr>
<td>ii. Yes</td>
<td></td>
</tr>
</tbody>
</table>
J.V.e Do you have any additional comments?

Trans Bay operates a transmission-only system without any distribution lines. Trans Bay does not operate within any high fire threat areas, wildlands, or wildland urban interfaces, but does operate adjacent to a Tier II (Elevated) high fire threat area. As Trans Bay’s transmission infrastructure is all underground or submerged except for its two substations, weather has minimal impact on operations. Trans Bay also does not have any retail or distribution customers. As such many of the questions in this survey are not specifically applicable to Trans Bay. Trans Bay notes that in lieu of ‘Not Applicable’ being available as a response, the most appropriate response available was selected.