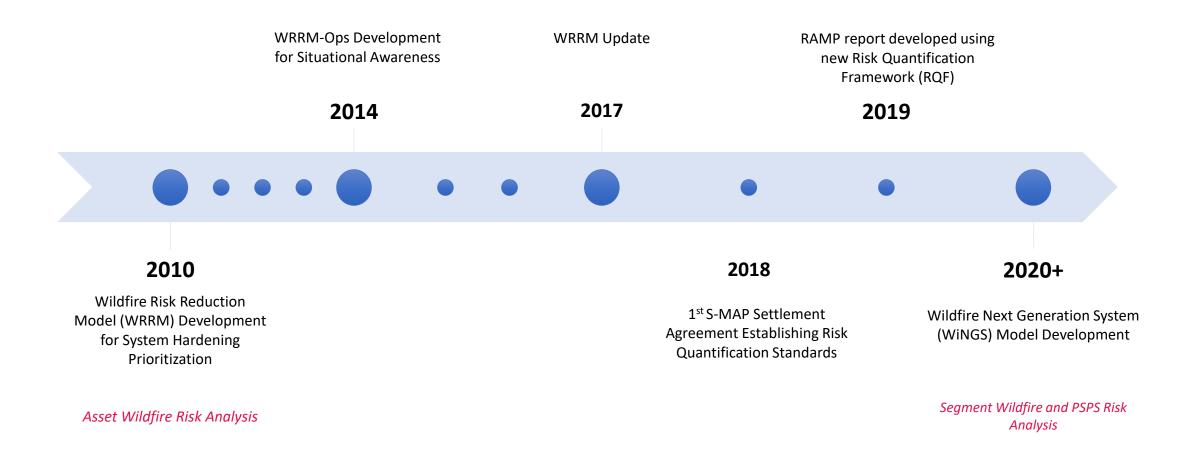
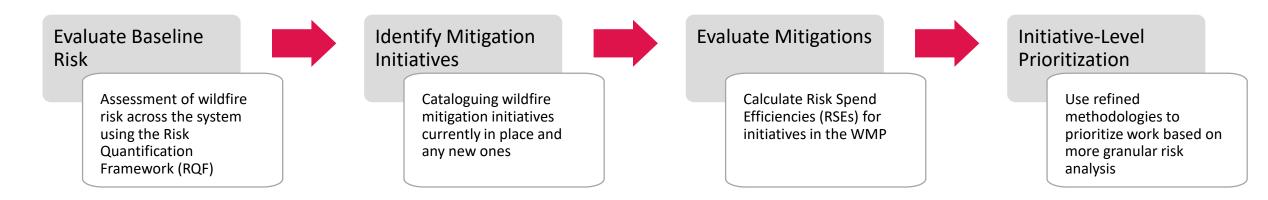


2021 WMP Update Workshop

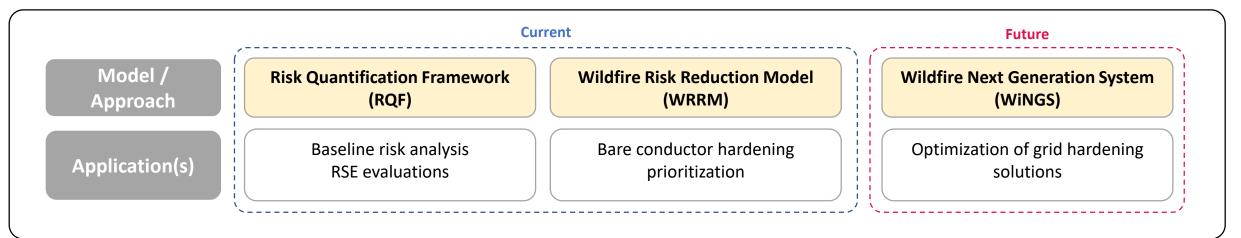

Risk Assessment, Mapping & Resource Allocation Methodology

February 23, 2021

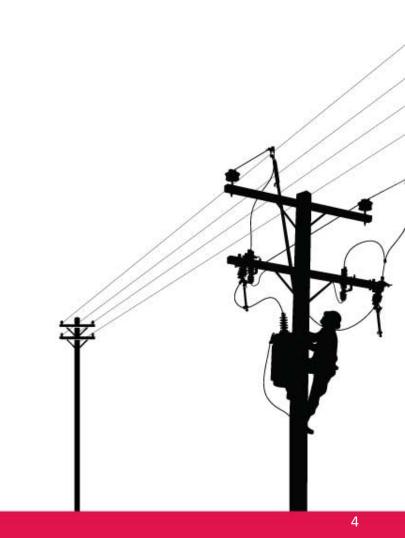
Wildfire Risk Modeling Evolution



SDG&E continues to evolve its risk modeling capabilities to adapt to emerging challenges



Risk-Informed Decision-Making Approach


Key Risk Models and Frameworks

Risk Quantification Framework (RQF)

Enterprise risk assessments and RSE calculations

Enterprise-Level: Risk Quantification Framework

A Sempra Energy utility®

Risk Quantification Framework

Attribute	Unit	Range	Weight
Health & Safety	Index	0 - 20	60%
Reliability	Index	0 - 1	20%
Financial	\$M	\$0 - 500M	15%
Stakeholder Impact	Index	0 - 100	5%

Health & Safety Index

Stakeholder Impact

Sub Attribute	Value	Stakeholders	Severity	Duration	Value
Fatality	1	Affected*	,		
Serious Injury	0.25	Five Stakeholders	Extreme	6+ Months	100
Acres Burned*	0.00005	Three to Four Stakeholders	Major	1 - 6 Months	50
*Applies to wildfire risk only		Two to Three Stakeholders	Moderate	<1 Month	25
		One Stakeholder	Minor	<1 Week	5

*Stakeholders: customers, employees, public, government, and regulators

Reliability Index (SDG&E / SoCalGas)

Sub Attribute	Unit	Range	Weight
Gas Curtailment (80 / 250)	# MMcf	0 – 250 / 0 - 500	25% / 50%
Meters Loss of Service	# of meters	0 - 50,000 / 0 - 100,000	25% / 50%
Electric Outage Count	SAIFI Outages	0-1	25% / 0%
Electric Outage Duration	SAIDI Minutes	0 - 100	25% / 0%

Enterprise Risk Assessments

Line No.	2021 RAMP Risk	LoRE	CoRE	Risk Score
1	Wildfires Involving SDG&E Equipment (WF/PSPS)	22/4	579/1,366	18,085 (12,623/5,462)
2	Electric Infrastructure Integrity	1,500	4	6,423
3	High Pressure Gas Incident (Excluding Dig-in)	0.88	2,117	1,866
4	Incident Involving a Contractor	1.67	1,061	1,768
5	Contact with Electric Equipment	1.09	1,375	1,500

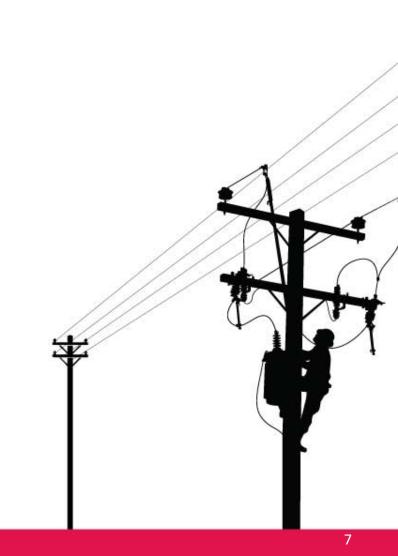
Wildfire Risk Assessment by Region

	Wild	fire Risk S	core	PSPS Impact			
	Non- HFTD	Tier 2	Tier 3	Non- HFTD	Tier 2	Tier 3	
Pre-Mitigation Risk Score	323	6,265	11,497	0	1,639	3,824	
LoRE	9.2	7.2	5.4	0	4	4	
CoRE	35	643	1,421	N/A	410	956	

Enterprise-Level: Risk Quantification Framework Illustrative Example

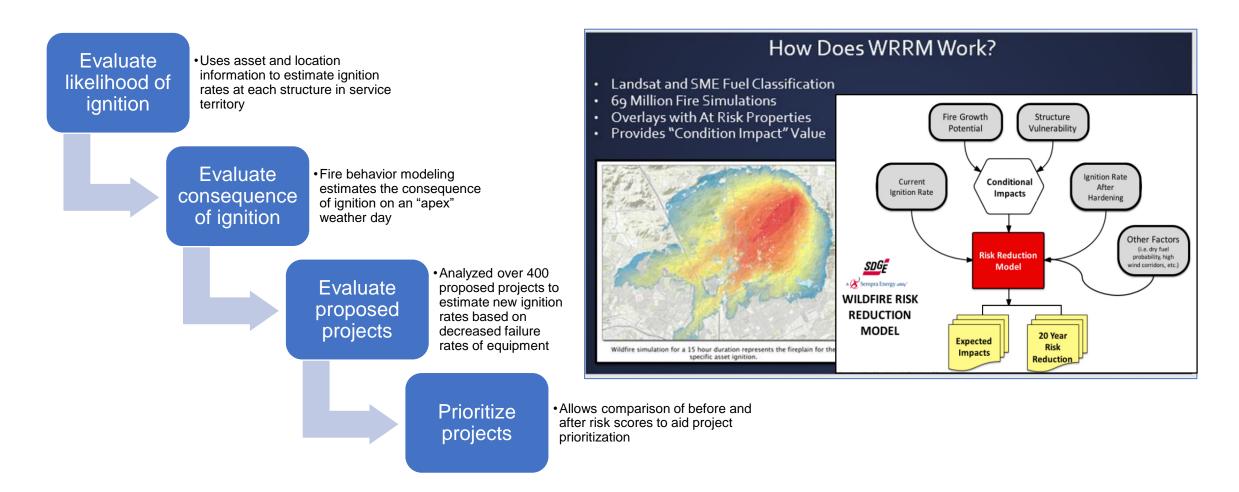
Mitigation: Hot Line Clamp Replacement – Tier 3 Tranche

Mitigation Overview: Hot line clamps (HLC) are identified as being potential ignition sources when they fail. A failure leads to a wire down situation. The replacement clamp system reduces the chances of a wire down even if there is a failure.


Risk Discussion: Hot line clamps are estimated to be responsible for 1.13 wires down per year in Tier 3. Removing the HLC reduces the likelihood of these events which lead to ignitions.

	Mitigation: Hot Line Clan	np Replacement	
Annual Red	uction of Likelihood of Risk Event	.008	
	Cost	\$2M	
	Life of Benefits	25 years	
	Pre-Mitigation	Post-Mitigation	
LoRE	21.8	21.792	
CoRE	((0.067 / 20) * 60% + (0.002) * 20% + (10.56 / 500) * 15% + (0.5 / 100) * 5%) * 100000 = 579	((0.067 / 20) * 60% + (0.002) * 20% + (10.56 / 500) * 15% + (0.5 / 100) * 5%) * 100000 = 579	
Risk Score	LORE * CORE = 21.8 * 579= 12,623	New LORE * CORE = 21.792 * 579= 12,618	
RSE	_	(12623 - 12618) * 25 / \$2M= 58	

Wildfire Risk Reduction Model (WRRM)


Asset Risk Analysis

Wildfire Risk Reduction Model (WRRM)

Identification of scope of work and priorities for overhead hardening in the 2020 WMP relied heavily on the WRRM)

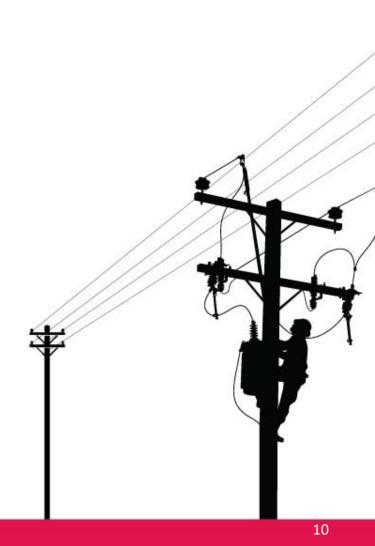


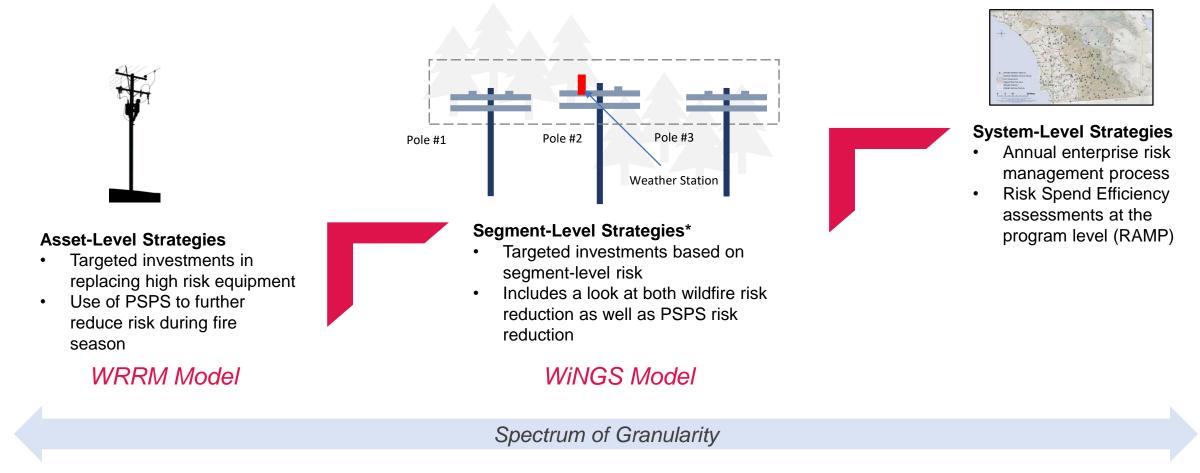
Wildfire Risk Reduction Model (WRRM)

Grid Hardening Using WRRM:

- Model outputs provide prioritized list of assets to target for mitigation through the FiRM program
- Analysis updates made to evaluate additional datasets for circuit-bycircuit grid hardening prioritization
- 2020 efficacy studies conducted showed 47% effectiveness of implemented grid hardening projects

WRRM	Map	Sam	ole
	map	Jann	

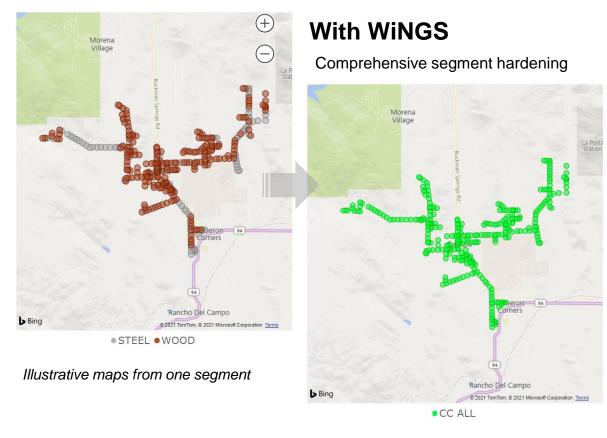

	Asset Class Risk Summary										
Proiect name	Risk Study										
Date created	8/24/2017 14:20										
Created by	DAS										
Description											
Date exported	8/24/2017 14:28										
Baseline Risk					Replacement Risk						
Asset Class	No. of Assets	Asset Type	Asset Age	Asset Subtype	Current	Mean Expected	Replacement	Replacement	Mean Replacement	Mean 20 Year Risk	Total 20 Year Risk
	_		_	_	Relative	Annual Impact	Asset	Relative Failure	Expected Impact	Reduction	Reduction
•	•		-	-	Failure Rate	•	-	Rate 💌	-	*	
L1605Aa40T49WO1P00	-	Distribution Pole	40-49 years	Wood	0.531		05Aa00T51SFOH00				
L1605Aa40T49WO5C00	-	Distribution Pole	40-49 years	Wood	0.864		605Aa00T51SFOH00			6	1
L1605Aa40T49WO5P00	-	Distribution Pole	40-49 years	Wood	0.579		i05Aa00T51SFOH00				
L1605Aa40T49WO7P00		Distribution Pole	40-49 years	Wood	0.603		i05Aa00T51SFOH00			1	
L1605Aa50T49WO3P00		Distribution Pole		Wood	0.616		05Aa00T51SFOH00			2	
L1605Aa50T49WO1P00		Distribution Pole		Wood	0.59		05Aa00T51SFOH00			1	
L1605Aa50T49WO5P00		Distribution Pole		Wood	0.643		05Aa00T51SFOH00				
L1605Aa50T49WO3O00	-	Distribution Pole		Wood	0.616		05Aa00T51SFOH00			1	
L1605Aa50T49WO2O00 L1605Aa50T49WO5O00		Distribution Pole	,	Wood Wood	0.603		05Aa00T51SFOH00				
L1605AunkT50SFOO00		Distribution Pole		Steel & Weath	0.643		05Aa00T51SFOH00				
L1605AunkT50SFOO00		Distribution Pole Distribution Pole	Unknown Unknown	Steel & Weath	0.3		05Aa00T51SFOH00				


Wildfire Next Generation System (WiNGS)

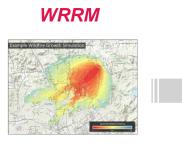
Analysis of segment-level risk for grid hardening optimization

Risk Modeling Granularity

Developed WiNGS to assess segment-level risk with the objective of reducing PSPS and wildfire risk


*Segments are comprised of multiple spans and structures between two isolation points and are typically thought of in terms of how SDG&E operates PSPS

Illustrative Shift in Strategies



Before WiNGS

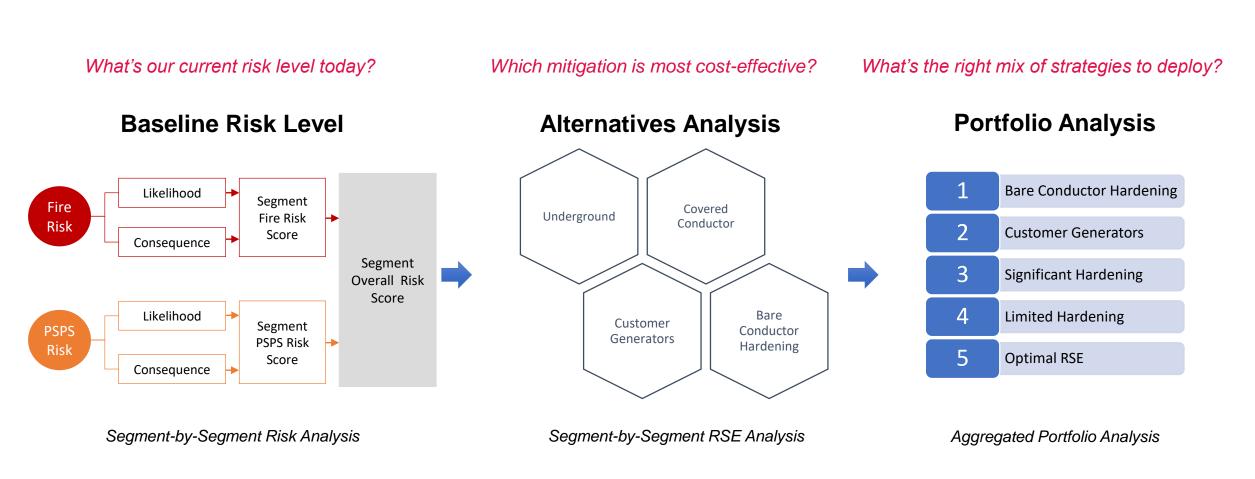
Targeted hardening of assets at risk

WRRM asset risk analysis is integrated into WiNGS' segment risk analysis

WiNGS

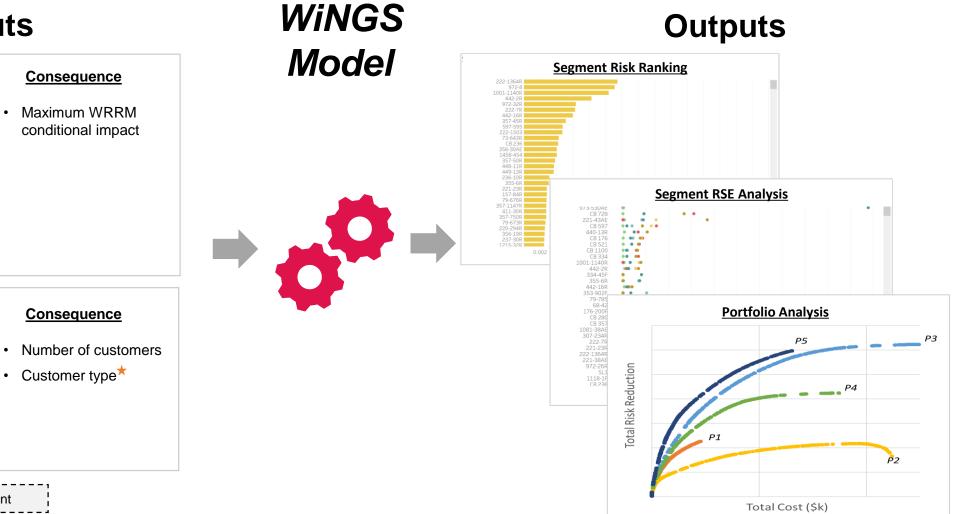
WiNGS Facts

- Over 600 distribution segments
- ~90K poles in those segments
- ~3,600 miles of distribution overhead
- Average length of segments ~6 miles


WiNGS Benefits

- Reduces PSPS impacts by identifying whole-segment solutions
- Builds on prior models and integrates their outputs
- Utilizes the same MAVF used in RAMP

WiNGS Overview



A risk-based decision-support tool to determine most cost-effective wildfire and PSPS risk reduction investments

WiNGS Model Inputs and Outputs

Inputs

Likelihood

- Historic ignitions ٠
- Wind speed •
- Tree strikes •

•

Wildfire

PSPS

- Hardening status
- Vegetation density * ٠
- Critical Health Index (CHI)* ٠
- Conductor age **★** •

Likelihood

- Annual RFW data
- Historic wind speed ٠ patterns
- Circuit connectivity * •

+Recent Improvement

- Number of customers
 - Customer type^{*}

Consequence

Consequence

WiNGS Application in 2020

Pivoting Mitigation Strategies

CC RSE

49

214

40

139

138

178

93

- Early analysis of segments in WiNGS informed part of the scope of work currently in the 2020 WMP (2022+)
- Pivoting in-flight work is not always feasible which is why it takes time to fully transition grid hardening scoping to the WiNGS framework

UG RSE

23

100

17

67

78

83

45

Deviation from Top RSE

igation Strategies

TH RSE

37

152

40

85

93

116

86

Recommended

Mitigation

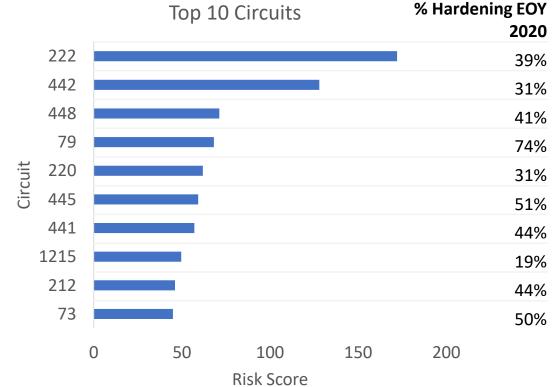
TH

TH

TH

CC

CC


CC

TH

Recommended Mitigation

Validation of WRRM Targeting Approach

• WiNGS circuit priorities align well with previously targeted circuits for hardening through WRRM

CC: Covered Conductor

Top RSE

Segment ID

448-9R

448-11R

448-13R

448-23R

448-19R

448-37

448-33R

UG: Underground

TH: Traditional Hardening (Bare Conductor Hardening)

Reason for

Deviation

Designed

Designed

Designed

Designed

Key Takeaways and Next Steps

Key Takeaways:

- History of using risk modeling to inform mitigation efforts
- Risk modeling needs to continue to evolve with emerging challenges
- Flexibility is important to determine appropriate models to use for various functions
- SME input is crucial to making final decisions
- It takes time to transition to new frameworks and shift operations and decision-making to new standards

Next Steps:

- WiNGS was updated at the end of 2020 and will be used to refresh assessments for future scoping of grid hardening
- The use of WiNGS to evaluate vegetation management will be explored this year
- Additional enhancements will be identified; a roadmap will be developed for the continuous improvement
- WiNGS is expected to inform majority of grid hardening scope in 2023 and beyond

